
Supplementary Information

A. Data

S. DataJHU CSSE cases database. We take daily confirmed case
counts from the Johns Hopkins University Center for Systems
Science and Engineering COVID-19 Global Cases dataset (1),
which collates official statistics from hundreds of world regions.
We use confirmed cases, because the alternative response vari-
ables have worse data quality or availability. In our window,
deaths are low in most regions: in fact, 28% of region-days
have 0 deaths; they also tend to show severe periodicity in
this window; and death data have their own ascertainment
issues (e.g. changing rates of post-mortem testing throughout
the epidemic). To our knowledge, daily hospitalisations are
only available for 15 of our 55 countries (2). Lastly, excess
mortality is rarely available at the required granularity, and
it also represents many causes of death besides COVID (e.g.
decreased flu mortality, traffic mortality, etc).

Many countries fail to report case numbers over the weekend
(or report weekly), which leads to spurious periodicity. In
addition, severe reporting errors (day-to-day spikes of 1000%
or troughs of less than 10% in countries with hundreds or
thousands of daily cases) occur in 23 regions. We manually
mask these errors (Table S.1), preventing the model from
learning from those days.

Costa Rica 2020-09-20, 2020-09-21
Ethiopia 2020-06-30, 2020-07-01 to 2020-07-08

Guatemala 2020-07-18
Lebanon 2020-08-04, 2020-08-05

Libya 2020-08-23, 2020-08-24
Michigan 2020-08-21, 2020-08-22, 2020-08-29, 2020-08-30

United Kingdom 2020-07-01, 2020-07-02
Honduras 2020-05-20 to 2020-05-24, 2020-05-29, 2020-05-30

Netherlands 2020-08-11, 2020-08-12
Panama 2020-06-14, 2020-06-15

Singapore 2020-08-05
Serbia 2020-07-25, 2020-07-26

Alabama 2020-06-27, 2020-06-28
Arizona 2020-06-29

Colorado 2020-09-04, 2020-09-05
Delaware 2020-05-23, 2020-05-24

Minnesota 2020-07-04
New Mexico 2020-05-23, 2020-05-24

Oregon 2020-06-06 to 2020-06-08, 2020-06-13, 2020-06-14
South Carolina 2020-06-03 to 2020-06-07

Washington 2020-05-23, 2020-05-24
Wisconsin 2020-08-18, 2020-08-19

Iowa 2020-08-27

Table S.1. Dates of reporting errors in the JHU case data

The OxCGRT NPI database. We take NPI data from the Oxford
COVID-19 Government Response Tracker, which collects data
at the national-level and US state-level (3). From these we
select the ‘containment’ policies, i.e. direct attempts to reduce
transmission.

Importantly, OxCGRT cannot be used for national mod-
elling without imputation. OxCGRT reports only one value
per region-day, even if policies differ between regions. The

dataset reports the maximum stringency of each NPI, whether
or not this is implemented in all regions. This leads to the
national stringency value being “hidden” behind the highest
regional value, where any region has stronger measures. As a
result, when a policy is strengthened in only part of a region,
we impute the previous national value.

We process the NPI data as follows:

• We filter to rows with national coverage (Flag columns =
1).

• We threshold the ordinal values as in Table S.2, creating
a feature for the first mandatory level of each policy
and additional features for higher levels of school closing,
workplace closing and restrictions on gatherings. This
yields 10 NPI features.

• When a policy is strengthened in only part of a region,
we impute the previous national value.

Original feature name Original scale Cutoff
C1_School closing Ordinal (0-3) 2,3
C2_Workplace closing Ordinal (0-3) 2,3
C3_Cancel public events Ordinal (0-2) Obsoleted
C4_Restrictions on gatherings Ordinal (0-4) 2, 3, 4
C6_Stay at home requirements Ordinal (0-3) 2
C7_Restrictions on internal movement Ordinal (0-2) 2
H6_Facial Coverings Ordinal (0-4) 2, 3
*_Flag Binary -

Table S.2. OxCGRT NPI features and our threshold choices

UMD / Facebook wearing dataset. We use the University
of Maryland Centre for Geospatial Information Science—
Facebook Research survey as our main source of daily, self-
reported wearing data (4, 5). This is by far the largest-scale
survey of COVID mask-wearing (with 19.97 million individual
responses in our window, or 1,500 individual responses per
region-day). The survey uses stratified random sampling of all
active Facebook users to ensure demographic balance in each
region, and also guarantees at most one response per month
per Facebook user.

An alternative survey, the Imperial College London—
YouGov COVID-19 Behaviour Tracker (6) is one hundred
times smaller than UMD, uses nonrandom sampling, and has
most days missing, and is as such less suitable for modelling.

We validate UMD against YouGov and the UK Office for
National Statistics (7) in Figure S.1. The survey questions:

• UMD: “did you, over the past 7 days, wear masks in
public most or all of the time?”

• ONS: “In the past seven days, have you used a face
covering when outside your home?”

• YouGov: “% of people reporting wearing a mask when in
public places.”

We see close agreement between UMD and YouGov, with a
higher estimate from the ONS owing to their looser definition.
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Fig. S.1. Three sources of self-reported wearing data for the UK.

The COVIDNearYou / SurveyMonkey United States wearing
dataset. The UMD dataset does not include US wearing data,
while the respective CMU / Facebook US survey (8) does
not begin reporting until after our window of analysis. We
supplement UMD with data from Rader et al. (9).

The Rader data are individual survey responses on a reverse
Likert scale, weighted to correct for demographic imbalance
in the sample. To convert this to the UMD scale, we take
the mean of the grocery shopping and workplace features,
threshold at ≤ 2 (likely or very likely) and take the percentage
of rows in each state passing this threshold, and smooth over
a 7 day window. This results in a percentage-wearing feature
which is within 1% of the Facebook US data (8) for the period
where the two datasets overlap.

The wearing level and new daily cases (1 week moving
average) of all regions are plotted in Figure S.16. See also
Fig S.14 for a full picture of covariates by region.

Google Mobility Index. We use the Google COVID-19 Commu-
nity Mobility Reports to index mobility changes in each region
(10). We form a single feature by averaging the indoor pub-
lic components (retail and recreation, grocery and pharmacy,
transit, and workplaces). We parameterise mobility similarly
to Unwin et al. (11).

Instantaneous reproduction number estimates. To validate
our model estimates, and for the initialisation of R0, we use
regional Rt estimates from the Epidemic Forecasting group
(12). The estimates are calculated using a nonparametric
approach from (13). US state-level estimates are taken from
https://rt.live/.

Region selection. The OxCGRT dataset has 184 countries, or
235 regions counting US territories. 81 of these regions are
missing from the UMD wearing data, and are thus dropped
when joining to OxCGRT. We manually drop 32 regions with
frequent extreme periodicity in case reporting, 16 that have
fewer than 5000 cumulative cases in our window, 10 not con-
tained in the Google Mobility dataset, and 4 that are missing
more than 3 consecutive weeks of wearing data. The resulting
included regions are shown in Table S.3.

Mask-wearing and mask mandates in the first wave. The
YouGov survey (6) begins in Jan 2020 for some locations,

Continent Region
Asia Bangladesh, India, Indonesia, Iraq, Israel, Japan,

Lebanon, Nepal, Philippines, Saudi Arabia,
South Korea, Singapore, United Arab Emirates

Europe Austria, Belarus, Croatia, Czech Republic,
Germany, Greece, Hungary, Ireland, Italy, Moldova,
Netherlands, Norway, Poland, Portugal, Romania,
Russia, Sweden, Turkey, Ukraine, Switzerland,
United Kingdom

Africa Egypt, Morocco, Libya, Kenya, Nigeria,
South Africa

South & Central Argentina, Bolivia, Brazil, Colombia, Costa Rica,
America Dominican Republic, El Salvador, Guatemala,

Honduras Mexico, Panama, Paraguay, Venezuela
North America Canada, Alaska, Alabama, Arkansas, Arizona,

California, Colorado, Delaware, Florida, Georgia,
Hawaii, Iowa, Illinois, Indiana, Massachusetts,
Maryland, Michigan, Minnesota, Missouri, Montana,
North Carolina, North Dakota, Nebraska, New
Jersey, New Mexico, Nevada, New York, Ohio,
Oklahoma, Oregon, Pennsylvania, South Carolina,
South Dakota, Texas, Utah, Virginia, Washington,
Wisconsin

Oceania Australia

Table S.3. Regions included in the analysis, by continent

which enables us to check the mandate-wearing relationship in
the first wave, at the time of the earliest mandates. Figure S.2
displays the estimates against mandate date (including some
regions with multiple mandates). The average reported level
of mask-wearing in Jan 2020 was 32.7%. This increased to an
average of 64.2% before the first national mandate implementa-
tions in March and April. There was an average post-mandate
increase in wearing of 11%, similar to in our modelling set (an
8.3% post-mandate increase).

Mask recommendations. We follow past work in timing man-
dates with the beginning of the nominal legal enforcement of
wearing. Our source of NPI data (3) also contains an indicator
for whether a non-mandatory government recommendation
to wear masks was in place. To see if this less stringent, but
generally earlier, policy has stronger correlations with subse-
quent mask-wearing, we repeat the exploratory analysis from
above. The correlation between wearing percentage and any
form of recommendation or mandate is weaker than before,
Spearman’s ρ = 0.23, p < 0.001, compared to the mandate
correlation of 0.32.

Case ascertainment rate. A model that only uses confirmed
cases could result in systematically biased estimates if the
case ascertainment rate (the ratio of detected cases to actual
infections) changes over the window of analysis.

Our model does not use cases naively. As regards the
multi-week confirmation delay, the model places a prior over
this (centred on 11 days with standard deviation 6 days), and
infers a time-varying reporting delay T [t]. Coupled with the
noise on R, this allows us to capture changing ascertainment
and similar confounders. The model is designed to be able
to distinguish changes in the ascertainment rate (AR) from
changes in NPIs (including wearing). Our noise terms can
capture changes in AR (and other latent quantities, like the
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Fig. S.2. YouGov wearing estimates over time, with mandates as dashed lines (6).
These regions are those with both YouGov estimates and national mask mandates.

infection-fatality ratio).
The random walk on R captures changes in ascertainment:

such AR changes show up as a constant change in cases, and
these constants cannot affect the wearing effect, because a
change in R from changes in wearing have exponential conse-
quences for cases - see the Infection Model section of the main
manuscript. (Consider a situation with ascertainment AR1
and a true number of active infections N . Confirmed cases
are then AR1 × N . If the rate was instead AR2, confirmed
cases would rise by only (AR2 −AR1)N .)

Further, in most regions, there is often a delay of weeks
between a new infection and an update in the confirmed
case count. We handle this with the case confirmation delay
distribution (see Methods).

We also simulate changing ascertainment rates and thus
test this directly. An ascertainment rate below 1 (which
is always the case in real data) means that confirmed cases
undercount true cases. In this simulation we thus want to scale
confirmed cases by a factor above 1. We want the simulated
AR to sometimes increase (as regions react to the pandemic
and create systems, e.g. testing all hospital admissions) and
sometimes decrease (as these systems suffer faults or test
shortages, or as behaviour fatigue leads to decreased public
subscription to contact tracing apps or test requirements). We
choose a relatively long timescale of weeks for these to change.

We simulate changing ascertainment by scaling confirmed
cases by the following time-varying process, which adds slowly-

varying Gaussian noise l(t) with timescale τ and marginal
variance σ2:

µt+1 =
(

1− 1
τ

)
l(t) [1]

l(t+1) = N
(
µt+1,

2σ2

τ

)
[2]

Letting l(0) = 0. We then perturb the confirmed cases by
taking y′t = yt × exp(1 + l(t)).

We choose the variance as to ensure the scaling factor
remains larger than 1: the spread of ascertainments that
result from this process are shown in Figure S.3.
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Fig. S.3. Distribution of ascertainment rates implied by our noise process on cases.
The flat line is the median of many runs; it is unlikely that any single realisation would
resemble it.

The sensitivity analysis in Figure S.38 shows that the esti-
mates are robust to changing ascertainment, though the high
variance condition does widen the posterior.

Immunity. One approach to understanding immunity is to esti-
mate the total number of people infected to date, by estimating
the case ascertainment rate. However, estimating case ascer-
tainment is difficult. Alternatively, we could use antibody
testing data of a random sample of the population. This is
not available for most countries during our window of anal-
ysis. What data is available indeed suggests very low levels
of immunity. For instance, the UK Office for National Statis-
tics COVID infection survey data (based on antibody testing)
begins in December 2020 (after the end of our study period,
in September 2020) (14). In December 2020, 7.5% of people
tested positive for antibodies in England. This is already small,
and we would expect an even smaller number to have been
infected and obtained immunity by September 2020 (the end
of our study window). Many of those will have obtained that
immunity after our study period, as there was a large surge in
cases during that period.

Belgium, one of the few other countries to report mid-
2020 antibody testing, reported 6% antibody seropositivity
at the end of June 2020 (15). This constitutes something like
an upper bound on the international immunity rate, since
Belgium was one of the hardest-hit countries in the first wave.

For a confounding influence on our estimates, what mat-
ters is not the total amount of immunity, but the change in
immunity during our study window – and the latter will be
even smaller than the numbers stated above.

Thus, changes in R arising from infections are likely to
be small, and such changes can be accounted for, at least
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in part, by the random walk on R, designed to account for
confounding.

The window of analysis used contains negligible numbers of
COVID vaccinations. Our results are likely to remain relevant
in the mass vaccination period, however: vaccines have not
eliminated SARS-CoV-2, and nor is there any evidence that
the transmission mechanism has changed dramatically.

B. Mandate data fail to detect the transmission effect

Our main analysis shows that mask-wearing in community
settings notably reduces SARS-CoV-2 transmission. If man-
dates cause wearing, then mandates can reduce transmission,
whether by increasing the quantity of people wearing masks,
or the quality of mask-wearing (mask type, mask fit, or in
more of the venues where transmission is likely to occur).

There are several ways a method could fail to detect this
effect. First, since wearing mask-wearing cannot exceed 100%
of the population), the marginal effect of a mandate may be
limited in cases where wearing was already saturated at a
high level at the time of the mandate, even though a mandate
could have had a large effect if voluntary wearing had been
lower. Second, since the implementation details of mandates
are key to their effect (e.g., venues, enforcement intensity,
etc.), summaries of average mandate effects can obscure the
possibility that some mandates may be highly effective and
others not. Third, mandates could increase the length of time
(i.e., in months) that people sustain mask-wearing, regardless
of strong initial voluntary uptake, but this would not appear in
analyses of instantaneous mandate effects. Finally, analyses at
the national level can fail to capture sub-national heterogeneity
in mandate timing and wearing uptake. In particular, observed
weak correlations should not be used to rule out mandate
effectiveness in specific contexts. Indeed, natural experiment
studies (16, 17) show that mandates can cause wearing in some
contexts.

Mask mandates are typically encoded as binary indicators
that signal whether mask-wearing was required in at least
some shared spaces (18–22). In the main text, we argued
that past work using binary mandate data produced incon-
sistent results because of methodological pitfalls, and so that
coarse national mandate data are unsuitable for modelling the
wearing-transmission effect. We test this claim by running
our model again, using binary mandate data from the Oxford
COVID-19 Government Response Tracker (OxCGRT) NPI
database (3) instead of UMD self-reported wearing. Only the
feature used to represent masks is changed; the priors and
functional form are kept the same.

We have two mandate covariates: xma1,t,c and xma2,t,c.
The first covariate, xma1,t,c, represents whether masks were
‘required in some or all shared spaces, outside the home with
other people present, or some situations when social distancing
not possible’ (field H6 from OxCGRT, level 2 (3)). The second
covariate, xma2,t,c, has the same conditions, but masking is
required in all shared spaces (field H6 from OxCGRT, level
3 or higher). For each mandate type, xma,t,c = 1 if a mask
mandate corresponding to the description above is active
at time t in region c; otherwise, xma,t,c = 0. xma1,t,c = 1
whenever xma2,t,c = 1, so the correct interpretation of the effect
associated with xma2,t,c is the additional effect of mandating
masks in all shared spaces, given that mask mandates were
already required in some shared spaces.

In this new analysis, we replace Wt,c of Infection Model
Eq. 2 with

Ma t,c = exp (−αma1 xma1,t,c) · exp (−αma2 xma2,t,c)

i.e. We model Rt as:

Rt,c = Rinit,c ·Xt,c ·Ma t,c ·M−t,c · exp(zt,c).

The mandate effect on R is given the prior

αma∼ Normal(µ=0, σ=0.08)

Note that the wearing effect prior reflects our beliefs about
the effect of going from 0-100% of people likely to wear masks.
But in our window, the range of wt,c averages only ∼ 20%
across our regions. Accordingly, we choose a mandate effect
prior of mandates that has 1/5th of the prior predictive effect
as the wearing prior.

All priors remain the same as in the wearing analysis. The
resulting mandate effect on transmission is shown in Figure S.4:
re-running the same model with mandate data fails to infer
an effect.
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Fig. S.4. Posterior reduction in R using OxCGRT binary mandate data (green) (3).
Mandates are operationalised as legally required in at least some public spaces (H6
level 2+) and as required in all public spaces (H6 level 3+). This shows the inadequacy
of this data, not the ineffectiveness of mandates.

The above analysis models the effects of mandates on trans-
mission as instantaneous: changing fully on the date the man-
date was enforced. This is not an entirely realistic assumption:
government policies can have both announcement effects (i.e.,
people changing their behavior when a new policy is announced
but before it is formally implemented) and a gradual adoption
(i.e., people gradually changing their behavior in the weeks
following implementation), even given mild legal pressure. As
a result, we also run the model with a gradual turn-on of the
mandate feature, steadily increasing to the maximum value
over the week following the beginning of enforcement. This
does not notably change the posterior estimate of the mandate
effect on R (Fig S.5).

To cover possible announcement effects, we also run the
model with a gradual 7-day lead on enforcement, steadily
increasing in strength over the week before the beginning of
enforcement, until one week after. This also does not notably
change the estimated mandate effect (Fig S.6).
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Fig. S.5. Posterior estimate of the mandate effect on R, with the mandate covariate
switching on gradually over the first week since enforcement.
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Fig. S.6. Posterior estimate of the announcement mandate effect on R, with the
mandate covariate switching on gradually over two weeks, from one week before
enforcement to one week after.

Given that wearing substantially reduces transmission, and
that mandates increase wearing by 8.6% on average in this
window, we might expect to see a small effect of mandates on
transmission. Why do we not find this? We hypothesise three
reasons. First, the effect we would expect to find is very small–
around 2%. Second, the circumstances of mandate policies are
highly heterogeneous, both in terms of the preexisting level of
voluntary wearing at the time of implementation and in terms
of how exactly they are defined, enforced, and complied with.
Consequently, averaging the international effect of mandates
based on coarse data is unlikely to provide a useful summary of
heterogeneous mandate effects. Third, mandate data provide
little signal: under half of the regions we study have had
mandates, and mandates are one-off; they fail to track day-to-
day changes in mask-wearing.

As a result, Fig. S.4 is not a substantive claim about the
ineffectiveness of mandates; instead we take it to demonstrate
the unsuitability of coarse binary national mandate data for
studying mask effectiveness. This has methodological implica-
tions: instead of using international data to model the average
effects of mandates, researchers should aim to shed light on
the conditions under which mandates are likely to be more or
less effective at improving and increasing the use of masks.

2020-05-03 Portugal 2020-05-04 Greece
2020-05-04 Nigeria 2020-05-05 New Mexico
2020-05-06 Massachusetts 2020-05-15 Moldova
2020-05-15 Oregon 2020-05-21 Honduras
2020-05-26 South Korea 2020-05-29 Virginia
2020-05-30 Bangladesh 2020-05-30 Saudi Arabia
2020-06-01 Bolivia 2020-06-01 Netherlands
2020-06-02 Panama 2020-06-18 California
2020-06-19 Nebraska 2020-06-22 Costa Rica
2020-06-24 Nevada 2020-06-24 North Carolina
2020-06-24 Utah 2020-06-26 Washington
2020-07-03 Texas 2020-07-06 Switzerland
2020-07-13 Croatia 2020-07-16 Alabama
2020-07-16 Colorado 2020-07-16 Ireland
2020-07-17 Michigan 2020-07-20 Arkansas
2020-07-22 Minnesota 2020-07-22 Philippines
2020-07-27 Indiana 2020-07-28 Paraguay
2020-08-19 Brazil 2020-08-27 Romania
2020-09-01 Czechia 2020-09-01 Italy
2020-09-06 Nepal 2020-09-08 Turkey
2020-09-11 Hungary 2020-09-14 United Kingdom

Table S.4. Enforcement dates for all new national mandates in our
window, May-Sep 2020

C. Model Outputs

Visualising the mask effect. To make clearer the magnitude
of the mask effect in different regions, we show the estimated
effect over time, given local changes in the reported wearing
level. All 92 regions are plotted on Zenodo; an example is
Figure S.7, chosen to show the effect of a fall in wearing.
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Fig. S.7. Estimated Rt for one of our 92 regions, as the wearing level (top) changed
over time. Bottom panel shows the overall Rt estimate (pink) and the estimate
excluding the mask effect (blue, simulating a 0% wearing level).

MCMC statistics. We use PyMC3’s implementation of Hamil-
tonian Monte Carlo with the No-U-Turn sampler (NUTS) (23).
The following outputs are from running the default model with
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Fig. S.8. Gelman-Rubin R̂ score (left) and effective sample size (right) for each
parameter in the model.

The Gelman-Rubin diagnostic R̂ tests for convergence of
the sampler. When R̂ is close to 1 (i.e. < 1.01 (24)), the
MCMC sampling algorithm is commonly considered to have
converged (25). Figure S.8 (left) therefore suggests that our
MCMC sampler has converged, and that our posterior may
be used to draw valid inferences.

We used 700 tuning samples and 700 posterior samples
for each of 4 chains, giving 5600 samples in total. There
were no divergent transitions. As shown in Figure S.8 (right),
ESS exceeds 30% of the raw sample size for the majority of
parameters, indicating low autocorrelation.

Traceplots for the global parameters can be found on Zen-
odo.
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Fig. S.9. Priors vs posteriors for learned model parameters.

Prior-posterior plots. Figure S.9 displays the priors and poste-
riors for parameters of our model. The posteriors are sharp
despite broad priors, which suggests that our data is informa-
tive about the parameters.

Prior predictive checks. The high dimensionality of our model
makes it difficult to tell what assumptions individual priors
jointly imply about the data-generating process. To make our
choices interpretable, we inspect the prior predictive curves.
Figure S.10 shows draws from nine random regions. This prior
seems to capture our beliefs about transmission. In particular,
we see step changes in R around the introduction or lifting of
NPIs, weekly periodic effects due to changes in mobility, and
fluctuations in Rt unlinked to NPIs or mobility. The model
allows a wide range of epidemic dynamics: repeated epidemics,
the possibility of eradication, and a tendency towards sudden
changes induced by binary NPI changes.
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Fig. S.10. Prior predictive checks for a random sample of 9 regions.

Figure S.11 shows the overall prior curve, averaging 1000
draws over all 92 regions (with 95% interval).
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Fig. S.11. Prior predictive check, averaged across regions and 1000 runs.

Posterior predictive distributions. Figure S.12 displays pre-
dicted cases during, and 3 weeks beyond, our window of anal-
ysis for example regions. All 92 region panels can be found on
Zenodo.
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Fig. S.12. Predictive curves from selected regions (log cases on y). The last 20 data
points are holdouts, unseen by the model.

Posterior correlations. Figure S.13 shows the posterior corre-
lations between the attributed R reductions for each modelled
effect.

We can use these correlations to diagnose excessively strong
collinearity in our data; collinearity would manifest as strong
posterior correlations (26). However, almost all of the pair-
wise correlations are −0.2 < r < 0.1, which indicates that
collinearity is manageable in our dataset. Notable negative
effect correlations exist between different levels of the same
NPIs:

• Restrictions on gatherings < 100 people and Restrictions
on gatherings < 1000 (-0.57);

• Restrictions on gatherings <10 and Restrictions on gath-
erings <100 (-0.23);

• School reopening (some schools) and School reopening
(all schools) (-0.51);

All other pairwise covariate correlations have an absolute
value less than 0.2.

Region panels. Figure S.14 displays inferred Rt against covari-
ate values for selected regions with a range of mask-wearing
dynamics (low mask wearing and no increase; high wearing
and no increase; a gradual increase in wearing; and a sharp
increase in mask wearing). All 92 region panels can be found
on Zenodo.

D. Sensitivity Analysis

Sensitivity analysis reveals the extent to which results depend
on uncertain parameters and modelling choices, and can di-
agnose model misspecification and excessive collinearity (26).
We vary many of the components of our model and recompute
the NPI effectiveness estimates. Overall, we perform 20 sensi-
tivity analyses with 60 conditions. Table S.5 summarises our
sensitivity analyses and their categories.

The effect sizes inferred for the other NPIs are smaller than
in other work (18, 19, 27) because they measure a different
effect: in this window, most regions begin with interventions
active, and changes in NPI status are most often reopen-
ings/lifting of bans. Such reopenings often result in an increase
in transmission that is smaller in magnitude than the decrease
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Fig. S.13. Posterior correlations between the covariate effects (reductions in R)

in transmission from the initial policy implementation—for
example, due to improved safety procedures (19).

Unobserved factors. Our data do not capture all of the govern-
ment NPIs that were implemented, and we only measure two
forms of voluntary behaviour change: mask wearing and mo-
bility. Unobserved factors may influence R, and if their timing
correlates with the timing of mask wearing or mandates, reduc-
tions in R from unobserved factors may be wrongly attributed
to mask-wearing or mandates (28)—our observed factors will
be confounded. For instance, observational estimates like
ours are potentially confounded by the correlation between
mask-wearing and other protective behaviours (29, 30). We
investigate this phenomena by assessing how much effective-
ness estimates change when previously observed factors are
excluded, following Sharma et al. (31).

Figure S.17 shows NPI effectiveness estimates when each
observed NPI is excluded in turn. Figure S.18 shows the
sensitivity of our effect estimates to excluding mobility from
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Category Experiment type Description

Unobserved
factors

NPI leave-out, Fig. S.17
Each observed NPI is excluded in turn, and then
all NPIs are.

Mobility leave-out, Fig. S.18 Exclude mobility from our model.

Fake wearing covariate, Fig. S.19
Use a synthetic covariate in place of wearing
that captures the wearing trend in each region.

Mobility and wearing only, Fig. S.20 Exclude all NPIs from the model.

Epidemiological
priors

Starting R: mean of hyperprior mean, Fig. S.21
Mean of the prior over the mean of the distribution
of country-specific basic reproduction numbers.

Starting R: scale of hyperprior mean , Fig. S.22
Scale of the prior over the mean of the distribution
of country-specific basic reproduction.

Starting R: scale of prior scale, Fig. S.23
Scale of the prior over the noise on country-specific
basic reproduction numbers.

Random walk noise scale, Fig. S.24 Scale of the prior over the size of the random walk step.

Delay
distributions

Generation interval prior mean, Fig. S.25 Mean of the prior over the mean generational interval.
Confirmation delay mean, Fig. S.26 Mean of the distribution of case confirmation delays.
Confirmation delay dispersion, Fig. S.27 Dispersion of the distribution of case confirmation delays.

Covariate
priors

NPI prior, Fig. S.28
Prior over the NPI effects
(not including mask-wearing and mask mandates).

Wearing effect prior scale, Fig. S.29 Scale of the prior over the wearing effect.
Mobility effect prior mean, Fig. S.30 Mean of the prior over the mobility effect parameter.
Mobility effect prior scale, Fig. S.31 Scale of the prior over the mobility effect parameter.

Model
structure

Wearing parameterisation, Fig. S.32 The functional form of the mask-wearing effect on R.
Random walk period, Fig. S.33 Number of days between random walk steps.

Data
Region bootstrap Figs S.34, S.35 Sample 92 regions with replacement from our set.
Window of analysis, Fig. S.36 Shorter periods of analysis.

Wearing range, Fig. S.37
Only include regions with > 15% change in wearing over the window.

Table S.5. Our sensitivity analyses
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Fig. S.14. Summary plots of selected region covariates and Rt estimates, summer
2020. Top-left: instantaneous Rt from our model. Bottom-left: instantaneous Rt

estimates from EpidemicForecasting (12). Bottom-right: overall NPI stringency from
OxCGRT (3)

our model. Reducing mobility has a large effect on R, so it
is encouraging to see that our effects are robust to excluding
mobility from our model.

One objection to our methodology is that mask-wearing
increases over our window of analysis while transmission de-
creases in many regions. It is therefore possible that this
correlation is a spurious contributor to the substantial appar-
ent wearing effect. We test this hypothesis by creating a fake
wearing variable for each region. Each variable has the same
start and end wearing value as the true wearing percentage
and linearly interpolates between these values to capture the
trend in wearing in that region. We infer a small and uncertain
effect for the fake wearing variable 7.6% [–20.2%, 30.0%] (see
Figure S.19). This implies that the wearing effect we infer
does not rely solely on the wearing trend in this period.

Figure S.20 shows the sensitivity of our effect estimates to
excluding all NPIs from our wearing model.

Epidemiological priors. Figure S.21 shows the sensitivity of
our effect estimates to µ̄, the mean of the prior over µ in
R̃init,c ∼ N(µ, σ2), where µ ∼ TruncatedNormal(0.1, µ̄, ψ).
Recall that R̃init,c is the reproduction number at the start
of the window of analysis, supposing mandates are not active
and no one is wearing masks. Figure S.22 shows the sensitiv-
ity of our effect estimates to ψ the scale of the prior over µ
in R̃init,c ∼ N(µ, σ2), where µ ∼ TruncatedNormal(0.1, µ̄, ψ).
Figure S.23 shows the sensitivity of our effect estimates to
ω, the scale of the prior over σ in R̃init,c ∼ N(µ, σ2), where
σ ∼ HalfNormal(ω). Figure S.24 shows the sensitivity of our
effect estimates to the prior over the random walk noise scale.

Delay distributions. Figure S.25 shows the sensitivity of the
effect estimates to the mean of the distribution of the genera-
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tion interval. Figures S.26 and S.27 show the sensitivity of the
effect estimates to the mean and dispersion of the distribution
that represents the delay between infection and case reporting.

Covariate priors. Figure S.28 shows the sensitivity of our effect
estimates to the prior over the NPI effects. Figure S.29 shows
the sensitivity of our effect estimates to the scale of the prior
over the wearing effect. Figure S.30 shows the sensitivity of
our effect estimates to the mean of the prior over the mobility
effect.

Figure S.31 shows the sensitivity of our effect estimates to
the scale of the prior over the mobility effect.

Model structure. Figure S.15 shows the effect on R of our three
parametrisations of the wearing effect. (The default, reported
in all main figures, is the negative exponential, see ‘Materials
and Methods’.)

Figure S.32 shows the sensitivity of our effect estimates
to the parameterisation of the wearing effect. The wearing
parameterisations are defined as follows:

• Exponential (base model): W exp
t,c = exp (−αwwt,c).

We use this form in our base model because it is consistent
with the form of the mandate effect on R.

• Linear : WL
t,c = ReLu (1− αwwt,c) ,

where ReLU is the Rectified Linear Unit. The ReLU func-
tion preserves positive inputs and maps negative inputs to
zero. We include the linear form because it is the simplest
way to approximate wearing’s effect on transmission.

• Quadratic: WQ
t,c = ReLu

(
1− αw,1wt,c − αw,2w

2
t,c

)
.

The quadratic form is based on a simple model: suppose
two people interact, and there is a fixed, independent
probability that each of them wears a mask. Then the
reduction in the probability of transmission due to mask-
wearing is quadratic in the probability that each wears a
mask. The two α parameters correspond to source control
and wearer-protection.

Figure S.33 shows the sensitivity of our effect estimates to
the period of the random walk. For a period of N days the
value of Rt,c may change without a change of covariates every
N days.

Data permutations. Figures S.34 and S.35 show the sensitivity
of our effect estimates to bootstrapping our regions. Boot-
strapping assesses how much our effect estimates depend on
the regions we included. For each seed we sample 92 regions
with replacement from our set of 92 regions. Each bootstrap
contains 58/92 unique regions on average.

Figure S.36 shows the sensitivity of our effect estimates to
shorter periods of analysis. We see little variation in our effect
estimates, which implies that our results may generalise to
other periods.

Figure S.37 shows the sensitivity of our effect estimates to
limiting the sample to regions where wearing varied greatly,
i.e. by more than 15% of population over the window of
analysis. This drops 26 of the 92 regions, and produces a
similar posterior estimate of the wearing effect.
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Fig. S.16. Wearing level (blue), log new daily cases (1 week moving average, green), mandate (black) for all regions. For a view including known confounders, see Fig. S.14.
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Fig. S.17. Sensitivity of our effect estimates to leaving out recorded interventions,
simulating unobserved confounding effects on transmission.

-25% 0% 25% 50% 75% 100%
Reduction in R

Mask-wearing

Mobility leave-out (Wearing model)

No mobility
Mobility

Fig. S.18. Sensitivity of effect estimates to excluding mobility from our model.
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Fig. S.19. Effect estimates when wearing data is replaced by synthetic data that tracks
the linear change in wearing, in our window, for each region.
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Fig. S.20. Sensitivity of effect estimates to excluding all NPIs.

Fig. S.21. Sensitivity of effect estimates to µ̄, the mean of the prior over µ in R̃init,c ∼ N(µ, σ2), where µ ∼ TruncatedNormal(0.1, µ̄, ψ). (L): wearing, (R): mandates.

Fig. S.22. Sensitivity of our effect estimates to ψ the scale of the prior over µ in R̃init,c ∼ N(µ, σ2), where µ ∼ TruncatedNormal(0.1, µ̄, ψ).
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Fig. S.23. Sensitivity of our effect estimates to ω, the scale of the prior over σ in R̃init,c ∼ N(µ, σ2), where σ ∼ HalfNormal(ω).
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Default (HalfNormal(0.15))

Fig. S.24. Sensitivity of our effect estimates to the noise scale of the weekly random walk.
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Default (5.41 days)

Fig. S.25. Sensitivity of our effect estimates to the mean of the generation interval.
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Fig. S.26. Sensitivity of our effect estimates to the mean of the delay from infection to case reporting.
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Default (5.41)

Fig. S.27. Sensitivity of our effect estimates to the dispersion of the delay from infection to case reporting.
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Fig. S.28. Sensitivity of our effect estimates to the prior over the NPI effects.
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Fig. S.29. Sensitivity of our effect estimates to the scale of the prior
over the wearing effect.
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Fig. S.30. Sensitivity of our effect estimates to the mean of the prior over the mobility effect.

-25% 0% 25% 50% 75% 100%
Reduction in R

Mask-wearing

Mobility effect prior scale (Wearing model)

0.35
0.4
0.5
0.55
Default (0.44)

Fig. S.31. Sensitivity of our effect estimates to the scale of the prior over the mobility effect.
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Default (Exponential)

Fig. S.32. Sensitivity of our effect estimates to the to the parameterisation of the wearing effect.
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Fig. S.33. Sensitivity of our effect estimates to the period of the random walk.
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Fig. S.34. Sensitivity of our effect estimates using random bootstrapped sets of regions. Seed 0-4.
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Fig. S.35. Sensitivity of our effect estimates using random bootstrapped sets of regions.

-25% 0% 25% 50% 75% 100%
Reduction in R

Mask-wearing

Window of analysis (Wearing model)

2020-05-01 to 2020-09-01
2020-06-01 to 2020-09-21
Default

Fig. S.36. Sensitivity of our effect estimates to the window of analysis.
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Fig. S.37. Sensitivity of effect estimates to excluding regions where
wearing did not vary by more than 15% of population.

-25% 0% 25% 50% 75% 100%
Reduction in R

Wearing posterior under changing ascertainment

2 = 0.2, = 14
2 = 0.1, = 7
2 = 0.1, = 14

Confirmed cases

Fig. S.38. Sensitivity of our wearing effect estimate to changes in the rate of unreported cases (time-varying scaling of confirmed cases).
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